quasi-algebraic - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasi-algebraic - traduction vers russe

Quasi-algebraically closed; Quasi-algebraic closure; C1 field; Quasi algebraically closed field; Quasi algebraically closed; C2 field

quasi-algebraic      

общая лексика

квазиалгебраический

quasinormed space         

математика

квазинормированное пространство

quasi         
  • Quasi on stage in Chicago with Joanna Bolme in 2006.
WIKIMEDIA DISAMBIGUATION PAGE
Quasi (disambiguation)

['kwɑ:zi]

общая лексика

как будто

как бы

почти

прилагательное

['kwɑ:zi]

общая лексика

кажущийся

видимый

наречие

общая лексика

как бы, якобы

Латинский язык

как будто

как бы

якобы

почти

Définition

Quasi
·- As if; as though; as it were; in a manner sense or degree; having some resemblance to; qualified;
- used as an adjective, or a prefix with a noun or an adjective; as, a quasi contract, an implied contract, an obligation which has arisen from some act, as if from a contract; a quasi corporation, a body that has some, but not all, of the peculiar attributes of a corporation; a quasi argument, that which resembles, or is used as, an argument; quasi historical, apparently historical, seeming to be historical.

Wikipédia

Quasi-algebraically closed field

In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper (Tsen 1936); and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper (Lang 1952). The idea itself is attributed to Lang's advisor Emil Artin.

Formally, if P is a non-constant homogeneous polynomial in variables

X1, ..., XN,

and of degree d satisfying

d < N

then it has a non-trivial zero over F; that is, for some xi in F, not all 0, we have

P(x1, ..., xN) = 0.

In geometric language, the hypersurface defined by P, in projective space of degree N − 2, then has a point over F.

Traduction de &#39quasi-algebraic&#39 en Russe