Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:
общая лексика
квазиалгебраический
математика
квазинормированное пространство
['kwɑ:zi]
общая лексика
как будто
как бы
почти
прилагательное
['kwɑ:zi]
общая лексика
кажущийся
видимый
наречие
общая лексика
как бы, якобы
Латинский язык
как будто
как бы
якобы
почти
In mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper (Tsen 1936); and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper (Lang 1952). The idea itself is attributed to Lang's advisor Emil Artin.
Formally, if P is a non-constant homogeneous polynomial in variables
and of degree d satisfying
then it has a non-trivial zero over F; that is, for some xi in F, not all 0, we have
In geometric language, the hypersurface defined by P, in projective space of degree N − 2, then has a point over F.